Ez a cikk egy több fejezetes gépi tanulásról szóló cikksorozat második fejezet. A jelenleg elérhető fejezetek:
Miután az alapokkal megismerkedtünk ideje belecsapni a lecsóba. A Machine Learning (ML) egyik leggyakrabban használt és legszélesebb körben ismert interpretációja a regresszió és annak alternatívái közül is a lineáris regresszió. Sokan ezen szó hallatán gyomorgörcsöt kaphatnak és rémálomként idézhetik fel az egyetemi mat/gazd. stat. élményeiket. Igen, ez ugyanaz a regresszió, amiről ott is tanultatok.
Azon olvasóknak akiknek vagy már megkopott ez a tudása, vagy nem is tűnik számukra ismerősnek ez, azoknak egy kis gyorstalpaló:
Sokszor hallottam, olvastam már, hogy a Machine Learning (ML), magyarul: Gépi tanulás, lényegében egy olyan szintje az informatikának és az adatelemzésnek, amely már sokkal inkább tudományos tapasztalatokat igényel, mintsem programozói ismereteket. Sok esetben valamiféle mesterséges intelligenciának tekintik a ML-t (nem alaptalanul), amely abból a szempontból igaz is lehet, hogy a hétköznapi életben ismert és használt gépi tanuláson alapuló megoldások (pl. beszédfelismerés, képeken arcfelismerés, stb.) valóban mesterséges intelligenciára és gépi tanulásra épülne. Ettől függetlenül a gépi tanulás egyébként közel sem annyira nagy ördöngösség ami miatt tudományos fokozat kellene a megértéséhez és használatához.